Calorimeter and jet reconstruction

M. Weber (knowledgeable... but not expert)

Jet energy measurement with the ATLAS detector in proton-proton collisions at $\sqrt{s} = 7$ TeV, arXiv:1112.6426 $\sqrt{1}$

Temperatur ander ung:

$$\Delta T = \frac{\Delta E}{C}$$

mit DE = Energie verlust des einfallenden Teilchens

C = Warme kapazitat von Wasser

Man brancht 1 kCal, um 1 Liter Wasser um 1° zu erhöhen.

1 k(al $\stackrel{\triangle}{=}$ 1000 x 2.61 x 10 19 eV $\stackrel{\triangle}{=}$ 2.61 x 10 22 eV $\stackrel{\triangle}{=}$ 2.61 x 10 13 GeV = 2.61 x 10 TeV

M.Weber, 2012

Jet reco basics

- Jets used for ATLAS physics analyses are reconstructed by a jet algorithm starting from the energy depositions of electromagnetic and hadronic showers in the calorimeters
- The jet Lorentz four-momentum is reconstructed from the corrected energy and angles with respect to the primary event vertex

EM and Hadronic showers

Had, cal.

Em. cal.

Calorimeter jet

Change of composition

Radiation and decay inside detector volume

"Randomization" of original particle content

Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

Total loss of soft charged particles in magnetic field Partial and total energy loss of

charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially Lateral particle shower overlap

Change of composition

Radiation and decay inside detector volume

"Randomization" of original particle content

Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

Total loss of soft charged particles in magnetic field

Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially Lateral particle shower overlap

Change of composition

Radiation and decay inside detector volume

"Randomization" of original particle content

Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially Lateral particle shower overlap

Change of composition

Radiation and decay inside detector volume
"Pandomization" of original

"Randomization" of original particle content

Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially Lateral particle shower overlap

Change of composition

Radiation and decay inside detector volume
"Randomization" of original

"Randomization" of original particle content

Defocusing changes shape in lab frame

Charged particles bend in solenoid field

Attenuation changes energy

Total loss of soft charged particles in magnetic field Partial and total energy loss of charged and neutral particles in inactive upstream material

Hadronic and electromagnetic cacades in calorimeters

Distribute energy spatially Lateral particle shower overlap

Particle jets

- The jet energy calibration relates the jet energy measured with the ATLAS calorimeter to the true energy of the corresponding jet of stable particles entering the ATLAS detector
- <u>"Track jets"</u>: for systematic studies and calibration purposes, built from charged particles using their momenta measured in the inner detector
- <u>"Truth jets"</u>: jet algorithm applied to MC simulated stable particle jets

M.Weber, HASCO 2012

Sampling Calorimeters

- Absorber (passive) and detector (active) layers
- Fluctuations in visible energy: "sampling fluctuations" due to variation of the nnumber of charged particles in the detector

M.Weber, 2012

Energy resolution

- Statistical fluctations
 - In the number of particles in the shower
 - In the number of escaping or undetected particles
- Noise
 - Electronic noise
 - Pile up
- Constant
 - Dead material
 - Calibration errors
 - Mechanical imperfections
- Higher energy -> better resolution

$$\frac{\sigma(E)}{E} = \frac{a}{\sqrt{E}} \oplus \frac{\sigma_n}{E} \oplus constant$$

M.Weber, 2012

ATLAS jets

- Use Anti-kt with R=0.4 or R=0.6
- M. Cacciari and G. P. Salam, Dispelling the N3 myth for the kt jet-finder, Phys. Lett. B 641 (2006) 57
- M. Cacciari, G. P. Salam, and G. Soyez. http://fastjet.fr/
- Jet finding is done in y-phi coordinates
- Corrections are often done in eta-phi coordinates
- Jet pT reconstruction threshold is pT > 7 GeV
- Inputs are: topological clusters or towers (next slide)

Topological clusters

- groups of calorimeter cells that are designed to follow the shower development
- Start from a seed cell with S/N>=4, iteratively add cells with S/N>=2
- A splitting procedure exists
- E = Sum(Ecell), M=0 GeV,

Towers

static, eta × phi = 0.1×0.1,
 grid elements built directly
 from calorimeter cells

Efficiency

	Loose	Medium
HEC spikes	$(f_{\text{HEC}} > 0.5 \text{ and } f_{\text{HECquality}} > 0.5)$	Loose or
	or $ E_{\text{neg}} > 60 \text{ GeV}$	$f_{\rm HEC} > 1 - f_{\rm HECquality} $
Coherent	$f_{\rm EM} > 0.95$ and $f_{\rm quality} > 0.8$	Loose or
EM noise	and $ \eta < 2.8$	$f_{\rm EM} > 0.9$ and $f_{\rm quality} > 0.8$ and $ \eta < 2.8$
Non-collision	$ t_{\text{jet}} > 25 \text{ ns or}$	Loose or
background	$(f_{\rm EM} < 0.05 \text{ and } f_{\rm ch} < 0.05 \text{ and } \eta < 2)$	$ t_{\rm jet} > 10 \mathrm{ns}$
	or $(f_{\rm EM} < 0.05 \text{ and } \eta \ge 2)$	or $(f_{\rm EM} < 0.05 \text{ and } f_{\rm ch} < 0.1 \text{ and } \eta < 2)$
	or $(f_{\text{max}} > 0.99 \text{ and } \eta < 2)$	or $(f_{\rm EM} > 0.95 \text{ and } f_{\rm ch} < 0.05 \text{ and } \eta < 2)$

Table 1: Selection criteria used to reject fake jets and non-collision background.

Calibration

Calorimeter
 non-compensation
 partial measurement
 of the energy deposited
 by hadrons

- Dead material energy losses in inactive regions of the detector
- Leakage
 energy of particles reaching outside the calorimeters
- Out of calorimeter jet radiation energy deposits of particles inside the truth jet entering the detector that are not included in the reconstructed jet
- Noise thresholds and particle reconstruction efficiency signal losses in the calorimeter clustering and jet reconstruction

Jet response

NOT A SMALL
CORRECTION...

- Based ok MC (without MPI, as offset already corrected)
- Lines depicts the eta boundaries for the corrections, which will be averages

ATLAS knows several correction 'levels'

- Start from 'EM scale'
 - Apply an absolute calibration derived from test-beam measurements based on EM-showers
 - Test with muons (test-beam, MC, cosmics)
 - Test with Z-> ee
- Apply a 'simple' JES
 - Correct for lower detector response to hadrons
 - Cell based
- More 'realistic' scales
 - Cluster-by-cluster, jet-by-jet
 - Use in-situ calibrations

- Closure?
- Uncertainties at the level of %
- -> Systematic

Measure the top quark mass to $m_t = 173.2 + 0.9 \text{ GeV} (= 0.5\%)... (arXiv:1207.1069)$

Other Corrections

• Pile-up correction:

average additional energy due to additional protonproton interactions (correction from *in situ* measurements)

• Jet origin correction:

Correct the direction of the jet to originate from the primary vertex, no effect on energy

• Jet energy and direction correction:

Correction based on constants derived from the comparison of the kinematic observables of reconstructed jets and those from truth jets (MC).

Off-set due to pile-up

 Actually corrected for before the hadronic energy scale is restored, such that the derivation of the jet energy scale does not depend on it

D0 Jet Energy Scale cake

Essentially valid for ATLAS too

Offset

- Depends on eta, NPV, bunch spacing
- Also depends on the number of towers in a jet (area, but not trivial depending on jet algorithm)
- Shown: jet offset, based on tower offset

(b) Jet offset

Uncertainty

(a)
$$0.3 \le |\eta| < 0.8$$

Beyond the simplistic EM+JES

- The EM+JES calibration facilitates the evaluation of systematic, but the energy resolution is rather poor and it exhibits a rather high sensitivity of the jet response to the flavour of the parton inducing the jet
- Global calorimeter cell energy density calibration(GCW)
 - jet is calibrated as a whole, longitudinal weights
 - attempts to assign a larger cell level weight to hadronic energy depositions in order to compensate
- Local cluster calibration (LCW)
 - cluster shape variables characterize the topology of the energy deposits of electromagnetic or hadronic showers
 - "Local", from simulation, without considering the jet context

(a) GCW

(a) GCW+JES

(a) $|\eta| < 0.3$

Next... Split the jet in sub-jets

